Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The transmembrane oligomers of coronavirus protein E.

Identifieur interne : 004579 ( Main/Exploration ); précédent : 004578; suivant : 004580

The transmembrane oligomers of coronavirus protein E.

Auteurs : Jaume Torres [Singapour] ; Jifeng Wang ; Krupakar Parthasarathy ; Ding Xiang Liu

Source :

RBID : pubmed:15713601

Descripteurs français

English descriptors

Abstract

We have tested the hypothesis that severe acute respiratory syndrome (SARS) coronavirus protein E (SCoVE) and its homologs in other coronaviruses associate through their putative transmembrane domain to form homooligomeric alpha-helical bundles in vivo. For this purpose, we have analyzed the results of molecular dynamics simulations where all possible conformational and aggregational space was systematically explored. Two main assumptions were considered; the first is that protein E contains one transmembrane alpha-helical domain, with its N- and C-termini located in opposite faces of the lipid bilayer. The second is that protein E forms the same type of transmembrane oligomer and with identical backbone structure in different coronaviruses. The models arising from the molecular dynamics simulations were tested for evolutionary conservation using 13 coronavirus protein E homologous sequences. It is extremely unlikely that if any of our assumptions were not correct we would find a persistent structure for all the sequences tested. We show that a low energy dimeric, trimeric and two pentameric models appear to be conserved through evolution, and are therefore likely to be present in vivo. In support of this, we have observed only dimeric, trimeric, and pentameric aggregates for the synthetic transmembrane domain of SARS protein E in SDS. The models obtained point to residues essential for protein E oligomerization in the life cycle of the SARS virus, specifically N15. In addition, these results strongly support a general model where transmembrane domains transiently adopt many aggregation states necessary for function.

DOI: 10.1529/biophysj.104.051730
PubMed: 15713601


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The transmembrane oligomers of coronavirus protein E.</title>
<author>
<name sortKey="Torres, Jaume" sort="Torres, Jaume" uniqKey="Torres J" first="Jaume" last="Torres">Jaume Torres</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, Nanyang Technological University, Singapore. jtorres@ntu.edu.sg</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>School of Biological Sciences, Nanyang Technological University</wicri:regionArea>
<wicri:noRegion>Nanyang Technological University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jifeng" sort="Wang, Jifeng" uniqKey="Wang J" first="Jifeng" last="Wang">Jifeng Wang</name>
</author>
<author>
<name sortKey="Parthasarathy, Krupakar" sort="Parthasarathy, Krupakar" uniqKey="Parthasarathy K" first="Krupakar" last="Parthasarathy">Krupakar Parthasarathy</name>
</author>
<author>
<name sortKey="Liu, Ding Xiang" sort="Liu, Ding Xiang" uniqKey="Liu D" first="Ding Xiang" last="Liu">Ding Xiang Liu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15713601</idno>
<idno type="pmid">15713601</idno>
<idno type="doi">10.1529/biophysj.104.051730</idno>
<idno type="wicri:Area/PubMed/Corpus">002885</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002885</idno>
<idno type="wicri:Area/PubMed/Curation">002885</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002885</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002413</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002413</idno>
<idno type="wicri:Area/Ncbi/Merge">000D87</idno>
<idno type="wicri:Area/Ncbi/Curation">000D87</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000D87</idno>
<idno type="wicri:doubleKey">0006-3495:2005:Torres J:the:transmembrane:oligomers</idno>
<idno type="wicri:Area/Main/Merge">004816</idno>
<idno type="wicri:Area/Main/Curation">004579</idno>
<idno type="wicri:Area/Main/Exploration">004579</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The transmembrane oligomers of coronavirus protein E.</title>
<author>
<name sortKey="Torres, Jaume" sort="Torres, Jaume" uniqKey="Torres J" first="Jaume" last="Torres">Jaume Torres</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, Nanyang Technological University, Singapore. jtorres@ntu.edu.sg</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>School of Biological Sciences, Nanyang Technological University</wicri:regionArea>
<wicri:noRegion>Nanyang Technological University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jifeng" sort="Wang, Jifeng" uniqKey="Wang J" first="Jifeng" last="Wang">Jifeng Wang</name>
</author>
<author>
<name sortKey="Parthasarathy, Krupakar" sort="Parthasarathy, Krupakar" uniqKey="Parthasarathy K" first="Krupakar" last="Parthasarathy">Krupakar Parthasarathy</name>
</author>
<author>
<name sortKey="Liu, Ding Xiang" sort="Liu, Ding Xiang" uniqKey="Liu D" first="Ding Xiang" last="Liu">Ding Xiang Liu</name>
</author>
</analytic>
<series>
<title level="j">Biophysical journal</title>
<idno type="ISSN">0006-3495</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binding Sites</term>
<term>Cell Membrane (chemistry)</term>
<term>Computer Simulation</term>
<term>Dimerization</term>
<term>Lipid Bilayers (chemistry)</term>
<term>Models, Chemical</term>
<term>Models, Molecular</term>
<term>Multiprotein Complexes (analysis)</term>
<term>Multiprotein Complexes (chemistry)</term>
<term>Multiprotein Complexes (ultrastructure)</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Viral Envelope Proteins (analysis)</term>
<term>Viral Envelope Proteins (chemistry)</term>
<term>Viral Envelope Proteins (ultrastructure)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Complexes multiprotéiques ()</term>
<term>Complexes multiprotéiques (analyse)</term>
<term>Complexes multiprotéiques (ultrastructure)</term>
<term>Conformation des protéines</term>
<term>Dimérisation</term>
<term>Double couche lipidique ()</term>
<term>Liaison aux protéines</term>
<term>Membrane cellulaire ()</term>
<term>Modèles chimiques</term>
<term>Modèles moléculaires</term>
<term>Protéines de l'enveloppe virale ()</term>
<term>Protéines de l'enveloppe virale (analyse)</term>
<term>Protéines de l'enveloppe virale (ultrastructure)</term>
<term>Simulation numérique</term>
<term>Sites de fixation</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Multiprotein Complexes</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Lipid Bilayers</term>
<term>Multiprotein Complexes</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Complexes multiprotéiques</term>
<term>Protéines de l'enveloppe virale</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Cell Membrane</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="ultrastructure" xml:lang="en">
<term>Multiprotein Complexes</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Computer Simulation</term>
<term>Dimerization</term>
<term>Models, Chemical</term>
<term>Models, Molecular</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Complexes multiprotéiques</term>
<term>Conformation des protéines</term>
<term>Dimérisation</term>
<term>Double couche lipidique</term>
<term>Liaison aux protéines</term>
<term>Membrane cellulaire</term>
<term>Modèles chimiques</term>
<term>Modèles moléculaires</term>
<term>Protéines de l'enveloppe virale</term>
<term>Simulation numérique</term>
<term>Sites de fixation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have tested the hypothesis that severe acute respiratory syndrome (SARS) coronavirus protein E (SCoVE) and its homologs in other coronaviruses associate through their putative transmembrane domain to form homooligomeric alpha-helical bundles in vivo. For this purpose, we have analyzed the results of molecular dynamics simulations where all possible conformational and aggregational space was systematically explored. Two main assumptions were considered; the first is that protein E contains one transmembrane alpha-helical domain, with its N- and C-termini located in opposite faces of the lipid bilayer. The second is that protein E forms the same type of transmembrane oligomer and with identical backbone structure in different coronaviruses. The models arising from the molecular dynamics simulations were tested for evolutionary conservation using 13 coronavirus protein E homologous sequences. It is extremely unlikely that if any of our assumptions were not correct we would find a persistent structure for all the sequences tested. We show that a low energy dimeric, trimeric and two pentameric models appear to be conserved through evolution, and are therefore likely to be present in vivo. In support of this, we have observed only dimeric, trimeric, and pentameric aggregates for the synthetic transmembrane domain of SARS protein E in SDS. The models obtained point to residues essential for protein E oligomerization in the life cycle of the SARS virus, specifically N15. In addition, these results strongly support a general model where transmembrane domains transiently adopt many aggregation states necessary for function.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Singapour</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Liu, Ding Xiang" sort="Liu, Ding Xiang" uniqKey="Liu D" first="Ding Xiang" last="Liu">Ding Xiang Liu</name>
<name sortKey="Parthasarathy, Krupakar" sort="Parthasarathy, Krupakar" uniqKey="Parthasarathy K" first="Krupakar" last="Parthasarathy">Krupakar Parthasarathy</name>
<name sortKey="Wang, Jifeng" sort="Wang, Jifeng" uniqKey="Wang J" first="Jifeng" last="Wang">Jifeng Wang</name>
</noCountry>
<country name="Singapour">
<noRegion>
<name sortKey="Torres, Jaume" sort="Torres, Jaume" uniqKey="Torres J" first="Jaume" last="Torres">Jaume Torres</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004579 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004579 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15713601
   |texte=   The transmembrane oligomers of coronavirus protein E.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15713601" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021